Here we present a program to compute analysis of variance for 2 levels using 3 settings for each and to the confident interval and P-value requirement. Using material from INPUT H = [ H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 H12 H13 H14 H15 ] = [H] I = [ I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 I11 I12 I13 I14 I15 ] = [I] J = [ J1 J2 J3 J4 J5 J6 J7 J8 J9 J10 J11 J12 J13 J14 J15 ] = [J] Assuming [H], [I], and [J] are three settings where each setting contains three levels and each level contains 5 replications. Levels and settings could represent two factors. Null hypothesis: there is no difference between the means of the different levels Alternative: at least two of the means are different OUTPUT
Level of significance, confidence interval Hypothesis testing 2 → DIM(L6) DIM([E]) → L6 L6(1) → S L6(2) → T {1,1} → DIM([G]) 0 → [G](1,1) {S,S} → DIM([G]) For(P,1,S,1) For(M,1,T,1) [H](P,M) + [G](P,1) → [G](P,1) [I](P,M) + [G](P,2) → [G](P,2) [J](P,M) + [G](P,3) → [G](P,3) END END FOR(P,1,S,1) FOR(M,1,S,1) [G](P,M) / T → [G](P,M) END END 0 → DIM(L4) 0 → DIM(L5) S → DIM(L4) S → DIM(L5) FOR(P,1,S,1) FOR(M,1,S,1) L4(P) +[G](P,M) → L4(P) L5(M) +[G](P,M) → L5(M) END END L4/S → L4 L5/S → L5 0 → Z FOR(M,1,S,1) Z+L5(M) → Z END Z/S → Z 0 → A 0 → B FOR(P,1,S,1) A+(L4(P)-Z)^2 → A B+(L5(P)-Z)^2 → B END A*S*T → A B*S*T → B FOR(P,1,S,1) FOR(M,1,S,1) ([G](P,M)-L4(P)-L5(M)+Z)^2→[G](P,M) END END 0 → C FOR(M,1,S,1) FOR(P,1,S,1) C + [G](M,P) → C END END T*C → C AUGMENT([H],[I]) → [E] AUGMENT([J],[E]) → [E] S*T → R FOR(M,1,S,1) FOR(P,1,R,1) ([E](M,P)-Z)^2 → [E](M,P) END END 0 → D FOR(M,1,S,1) FOR(P,1,R,1) D+[E](M,P) → D END END D-A-B-C → E (S-1) → X (S-1) → Y (S-1) * (S-1) → V S * S * (T-1) → W DISP “USING F DISTRIBUTION” ((X + W)/2-1)! * ((X/W)^(X/2))→ K K / ((X/2-1)! * (W/2-1)!) → K (X/2)-1 → M (X/W) → R (X+W)/2 → Q “K * (X^M) / ((R*x+1)^Q)→ Y1 ((Y+W)/2-1)! * ((Y/W)^(Y/2))→ K K / ((Y/2-1)! * (W/2-1)!) → K (Y/2)-1 → M (Y/W) → R (Y+W)/2 → Q “K * (X^M) / ((R*x+1)^Q)→ Y2 ((V+W)/2-1)! * ((V/W)^(V/2))→ K K / ((V/2-1)! * (W/2-1)!) → K (V/2)-1 → M (V/W) → R (V+W)/2 → Q “K * (X^M) / ((R*x+1)^Q)→ Y3 A/X → M B/Y → N C/V → P E/W → R M/R → L N/R → J P/R → K fnInt(Y1,x,0,L) → H 1-H → Z H*100 → H DISP “for each setting or sample, required confidence interval to accept null hypothesis”, H DISP “for each setting or sample, required level of significance to accept null hypothesis”, Z fnInt(Y2,x,0,J) → H 1-H → Z H*100 → H DISP “for each level or column, required confidence interval to accept null hypothesis”, H DISP “for each level or column, required level of significance to accept null hypothesis”, Z fnInt(Y3,x,0,K) → H 1-H → Z H*100 → H DISP “for interaction between settings or factors, required confidence interval to accept null hypothesis”, H DISP “for interaction between settings or factors, required level of significance to accept null hypothesis”, Z |
ANOVA >